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The Analysis of General Two-Dimensional PEC

Structures Using a Modified CPFDTD Algorithm

Chris J. Railton, Ian J. Craddock, and John B. Schneider

Abstract— The use of the contour path finite difference time domain
(CPFDTD) method with locally distorted contours has been shown to
give accnrate results for cnrved metal structures. However, the nnmerical

stab]lity of thk scheme is not guaranteed and significant sKW is required
in order to generate an appropriate grid. In this contribution, we present

a modification to the CPFDTD scheme which ensures stab]lity and
give a step-by-step procedure for simple generation of the distorted
grid. Examples are presented to demonstrate that the modified scheme

yields results superior to those obtained using the standard staircase
finite difference time domain (FDTD) approach. Example geometries are
cytindricat cavities having complex cross-sections with smooth surfaces

and right-angle bends. The accuracy of the method is demonstrated by
comparison to analytical resnlts where available.

I. INTRODUCTION

The electromagnetic analysis of complex, curved metal structures

using the finite difference time domain (FDTD) technique has proved

a difficult challenge and one which has not yet been satisfactorily
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resolved. Such problems do, however, occur in a wide variety of

application areas ranging from propagation in waveguides to scat-

tering from aircraft fuselages. Attempts to overcome the difficulties

associated with this type of problem include the use of globally

distorted meshes [1]–[3] and the incorporation of static field solutious

(SFS) into the standard Cartesian mesh [41, [5]. The former requires
approximately three times the computer resources of the standard
Cartesian FDTD at the same number of points per wavelength [2],
while the latter, in its present state of development, is prone to
late-time instability.

A third approach to the problem is to use a locally distorted
mesh where the basic Cartesian grid is modified only in the vicinity
of the metal boundaries. One such scheme, the contour path finite
difference time domain (CPFDTD) scheme, is formulated in terms

of the integral form of Maxwell’s equations instead of the usual

differential form [6], [7]. A major advantage of this approach when

compared to other conformal techniques is that the simplicity and

efficiency of the Cartesian mesh is retained throughout the majority

of the problem space and only those nodes which are adjacent to

the curved surface need be given special attention. In addition, the

algorithms for absorbing boundaries, near-to-far field transformations

and Huygens’ sources, which are well developed for the standard

FDTD method, can be applied without change.

Despite the fact that this type of algorithm appears to allow

the efficient analysis of very complex structures, comparatively

little use of the method has been reported. Some researchers have

called into question the stability of the original CPFDTD scheme

since it employs a noncausal and nonreciprocal “nearest neighbor”

approximation[3],[81, [9]. Despite the fact that stability cannot
be guaranteed, it appears that, with appropriate grid selection, in-

stabilities may be weak enough so as not to preclude using the

original CPFDTD scheme for particular open-domain problems [9].

For lossless resonant strictures. however, for which there is no

mechanism for dissipating spuriously generated energy, meaningful

results are not usually obtainable [9], [10].

In this contribution we present a modified form of the two-

dimeusional (2-D) CPFDTD algorithm which overcomes these prob-

lems without sacrificing accuracy. This modification recasts the

“nearest neighbor” approximation, employed in standard CPFDTD,

such that reciprocal interaction of nodes is obtained. Examination

of the update equations for those E field nodes whose values are

borrowed by neighboring cells and for the H field cells which are

directly affected by them, shows that the original CPFDTD spatial

discretization scheme is likely to produce a system which does not

comply with the law of conservation of energy. It can also be shown

that grids which allow extended contours to overlap may not conserve

energy. Since, in these cases. the instability is inherent in the spatial

discretization, there will exist no choice of time step which will

yield a stable solution. Before it is useful to consider the problem

of determining the CFL limit for the modified di~erence scheme,

it is necessary to ensure that the under~ Ving differential scheme is

energy conserving. The modification described in this contribution

yields a system whose update equations are identical to those of a

passive electrical network consisting only of capacitors and gyrators

which must necessarily conserve energy [11 ].

In this paper the nature of the instabilities which can occur iu

the standard CPFDTD algorithm is discussed, then, a step-by-step

procedure is presented whereby the energy conserving CPFDTD mesh

can be generated. Finally the use of the method is demonstrated
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Fig. 1. The CPFDTD method applied to a cylinder.

for the analysis of a square resonator, rotated with respect to the

grid, and of aresonator with complex cross-section. By comparison

to analytical results for the square resonator the accuracy of the

scheme is shown. The accuracy and convergence properties are

further demonstrated, using the complex resonator, by varying the

unit cell size over a broad range. For the geometries presented here,

and for all other geometries to which the algorithm has been applied,

numerical stability was always achieved without reducing the time

step below that used for the standard FDTD scheme.

An alternative scheme aimed at solving similar problems to those

addressed in this paper was presented in [12] and further developed

in a very recent publication, [13]. Although the algorithm described

here is based on a generalization of the CPFDTD scheme whereas

that in [13]isbased onageneralization of the TLMmetiod, the two

algorithms have some aspects in common. The relative accuracy and

efficiency of these two schemes remains an open question.

II. THE NATURE OF THE INSTABILITY

As explained in [10], the root of the instability problem in the

standard CPFDTD approach can be traced to those E nodes whose

values are borrowed from neighboring distorted cells. Consider the

cross-section of acircular cylindrical resonator, a quarter of which is

shown in Fig. 1. Here, the grid for the TE problem is shown where

thelf. nodes areindicated bycircles anduelocated atthecentreof

each undistorted cell. The Ez and EY nodes are marked by crosses

or arrows and are found along the edges of cells. The magnetic

field is assumed to be constant over the area of a given cell while

electric fields are assumed to be constant over the length of the edge

corresponding to a given node. Dashed lines indicate edges which are

not used in the scheme. The E nodes represented by arrows cannot

be calculated directly using the FDTD scheme because one or both of

3 4 5

x

the H, nodes required inthecomesponding update equation is in the

metal. Following [6] these nodes borrow their value from the nearest

available collinear E field component. The numbers in the centre of

each square are the areas enclosed by the Faraday contours and the

numbers next to the edges are the lengths of the straight sections of

the associated contour. In each case the values are normalized so that

values of 100 correspond to an unmodified cell. Although the grid

shown in Fig. 1 appears to be the most obvious way of implementing

the CPFDTD algorithm, it is not difficult to demonstrate that such an

implementation leads to numerical instability. We may show t]his by

considering the scheme in matrix form thus

(YE
—= ABE/3~2 –— (1)

where~is the vector formed by the values of all the E field nodes

in the mesh, and ~ and ~ are matrices containing the coefficients

of the update equ%ions f;r the E and H nodes, respectively. The

elements of these two matrices differ from the coefficients of the

usual CPFDTD update equations only insofar as there is no factor

&t, i.e., at this point the system is assumed to be a continuous time

system. Equation (1) has the solution

(2)

where k, is the ith eigenvector of the matrix a and (~, +~UI,)2

is the corresponding eigenvalue. The condition for stability is that

none of the values of u, be greater than zero. If the discretised

scheme correctly represents a lossless situation then a, would be

zero for all values of i. This is not the case for the nearest-
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TABLE I

USED IN THE GENERATIONOF THE MODIFIED CPFDTD MESH

Name Associated Default Comment

Quantity Value

inside_metal HZ false true if HZis inside metaf

ex_available
I

E.
I

true

q_available I Ey I true

er_exist EX true

q_exist EY true

a>om EX o

qjrom EY o

fake if either of the neighboring ~ nodes are in metal

false if either of the neighboring ~ nodes are in metal

fat’se if edge is not used in the CPFDTD algorithm

false if edge is not used in the CPFDTD algorithm

Integer offset used to point to borrowed E. nodes

Integer offset used to point to borrowed EYnodes

neighbor discretization associated with Fig. 1. It is emphasised that

since only the spatial discretization is being examined here, this

instability will exist regardless of the time step used, i.e., the system

is unconditionally unstable.

Referring to Fig. 1, the update equation for Hz (1.5, 0.5) is given

by

(
H:+l(l.5,0.5) =H:(l.5,0.5) + ; ~E;+’’2(2.0.5)

+ 8oEn+1/2 )(1.5,0) - ;E;+’/’(5,1)l)
76 ‘

(3)

where E, (2.5. 1) is the borrowed node, M is the time step and A is

the space step.

The update equation for E, (2.5,1) is given by

E;+l/2J (2.5.1) =E:-1/2(2.5,1)

+ :( H:(2.5,1.5) – H:(~.5,0.5)). (4)

It can be seen that no corresponding inclusion of H, ( 1.5, 0.5) ex-

ists. This scheme represents an unphysical situation which, therefore,

cannot be guaranteed to behave in an energy conserving manner.

In order to remedy the situation, we must modify this equation to

include the missing term. This can be done as follows:

E“+l/z(2. L 1) =Ez. “-1/2(2.5,1) + $

(H~(2.5,1.5) – ~H; (l.5,0.5)

—

)
&~(2.5,0 .5) . (5)

Here we have taken a weighted average of the two H, nodes which

have a dependence on E= (2.5,1) through the contour segment with

a total length of 167, with the weights being in the same ratio as the

strengths of the corresponding dependencies. In general, the modified

update equations use a weighted average of the H, nodes to ensure

that the nodes associated with a borrowed value interact reciprocally.

As well as being intuitively more reasonable, this change makes it

possible to prove that the resulting scheme is the analogue of a passive

circuit consisting entirely of capacitors and gyrators [11]. The system

must, therefore, conserve energy. Calculation of the eigenvalues of

the new scheme confirms that, indeed, all values of a, are zero.

III. A PROCEDURE FOR GENERATING THE CPFDTD GRID

To facilitate the generation of the modified CPFDTD grid for

arbitrary metal objects we first define some parameters. These are

summarized in the Table I.

With each H node a flag is associated which indicates whether

or not that node is inside the metal. With each E node two flags

are associated. One flag indicates whether it can be updated using H

nodes which are outside the metal and is therefore available from the

standpoint of the standard FDTD equations. The other flag indicates

whether any portion of the edge associated with a node will be used

in the final mesh and will therefore exist. Ultimately. the status of

some nodes will be that they exist but are not available. For these

nodes it is then necessary to borrow values from neighboring nodes.

Therefore, for each E node an integer offset, f%m. is used to indicate

from where its value must be borrowed (a value of zero indicates

that no borrowing is necessary).

To generate the mesh and the associated update equations, we use

the following procedure:

1)

2)

3)

4)

5)

6)

For each H node, set the inside_metal flag to true if the node

is inside the metal.

For each E node in the mesh set the flag available to false if

either of the H nodes whose values are required in the standard

FDTD update equation are inside the metal.

For each E node set the exist flag to false if the corresponding

edge is totally inside the metal.

For each H node which is inside the metal and whose sur-

rounding undistorted contour intersects the metal boundary, set

the exist flag of one and only one of the surrounding E nodes

to false so as to join the contour to that of the neighboring

node which has the largest number of available surrounding E

nodes.

For each E node which is not availuble but does exist set the

from offset to the nearest collinear node which is available.

For each H node, which is not inside the metal, calculate the

lengths of each straight section of the distorted Faraday contour.

Additionally, calculate the area of the surface surrounded by

the contour.
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7)

8)

TABLE II
PERCENTAGEERROR IN THE RESULTSFORA ROTATED SQUARE RESONATOROF SIDE 30 cm AND UNIT CELL SIZE6

El Staircase Approximation Modified CFDTD

c1 -
Mode 1 Mode 3 Mode 1 Mode 3

Angle f3=5cm 6=2.5cm 6=5cm 6=2.5cm fS=5cm 6=2.5cm 6=5cm 6=2.5cm

o“ -0.72 -0.26 -2.85 -0.77 -0.72 -0.26 -2.85 -0.77

5° -0.72 -0.26 -2.85 -0.77 -0.60 -0.14 -2.42 -0.45

I@ -0.72 -2.66 -2.85 -6.91 -0.10 -0.02 -0.93 -0.53

15” -6.44 -1.46 13.3 -1.53 0.12 0.04 -1.41 -0.29

20’3 -6.44 -3.90 13.3 -0.92 0.40 0.36 -0.39 -0.21

25° -12.38 -3.80 13.6 -5.06 0.90 0.90 -1.25 0.30

3W’ -4.44 -4.76 13.6 -0.81 0.08 1,08 0.14 0.70

35” -4.44 -3.60 13.6 -6.04 1.42 1.18 1.20 0.80

4@ -4.44 -3.10 12.2 -4.33 3.36 1.34 2.20 0.70

45” -10.42 -3.06 -8.12 -3.54 1.86 1.78 0.10 1.00

Referring to (3), for each H node which is not inside the metal

we set the numerators and denominators of each fraction mul-

tiplying the Efieldnodes as follows. Setall the denominators

equal to the area surrounded by the Faraday contour. Set each

numerators equal to the length of that part of the Faraday

contour which passes through the E node with which it is

associated.

Referring to (5), for each E node which is available we set

the numerators and denominators of each fraction multiplying

the~field nodes as follows: Setalldenominators equal to the

length of the edge containing the E node. Set each numerator
equal to the length of that part of the edge which coincides
with the Faraday contour of the associated H node.

Asanexample weusethe cylinder shown in Fig. 1:

1)

2)

3)

4)

5)

6)

7)

The H, nodes at [0, O], [0, 1], [0, 2], [0, 3], [0, 4], [1, 1], [1, 2],

[1, 3], [1, 4], [2, 3], [2, 4], [3. 3], [3, 4], [4, 4] are inside_rnetal.

The nodes EZ[l,l], EX[2,3], EL[3,3], EZ[4,4] and Ev[l, O],

EV[2,1], EV[2,2], EV[4,3] are not available.

The flags ex_exist at[O, O], [O, 1], [0,2], [0,3], [0,4], [1,3],

[1,4], [2,4], [3,4], [4,41 aresetto~alse. The flags ey_exist
at [0, O], [0, 1], [0,2], [0, 3], [0,4], [1,0], [1, 1], [1, 2], [1,
3], [1,4], [2,3], [2,4], [3,4], [4,4] aresetto~alse.
The flags ey_existat [2, 1], [2,2] andtheflags ex-existat [2,

3], [3, 3] are set to false.
The offsets are set as: exjrom [1, 1] = 1, eyjrom [3,3] = – 1,
ex~rom [1, 2] = 1, ey~rom [4,3] = –1 all others to zero.

The values of the areas and the lengths of edges are calculated

as shown on Fig. 1.

The denominators of the fractions in the H field update equa-

tions are just those shown on Fig. 1 as areas. The numerators

are given by the lengths, also shown on Fig. 1.

8) Thenumerators anddenominators of the fractions intie Efield

update equations are given by the lengths shown on Fig. 1.

IV. THE CHOICE OF TIME STEP

Having established that the spatial discretization scheme is energy

conserving, it is now appropriate to consider the maximum time step

which is allowed. The CFL limit for the standard FDTD sdheme

can be established by the following condition. The time step must

be small enough so that the domain of dependence of the time

discretised scheme is greater than, or equal to, that of the underlying

differential equations. For the FDTD scheme the time step limit

can be found by considering propagation in the diagonal direction.

Maxwell’s eauations dictate that free space propagation between

neighboring diagonal nodes requires a time of ~. In the time

discretised scheme this requires 2 time steps. This leads to the well

known condition: tit < IS/ (c@) for stability. Consideration of the

modified CPFDTD scheme shows that no worse case than this has

been introduced and therefore the CFL condition is unaltered.

V. NUMERICAL RESULTS

In order to demonstrate both the stability and accuracy of the

scheme, the resonant frequencies of the TE modes of a rotated square

cylinder and of a cylinder with a complex cross-section have been

calculated. (The TM cases require no modification to the standard

CPFDTD scheme since, in this case, the scheme can be shown to

be physically realizable as no borrowing from neighboring distorted

cells is necessary.) Results for the case of a circular cylinder have

previously been presented in [10]. All these results were obtained

using 8000 time steps. Additional runs were done using 32000 time

steps and no instability was ever observed.
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Fig, 2. The distorted grid used for the “keyhole” waveguide.

TABLE III
RESULTSFORTHE RESONANT FREQUENCIESOF A KEYHOLE RESONATORVERSUS CELL SIZE 6

Staircase Approximation Modified CPFDTD

6 =24cm 6=12cm 8=4cm ~=3cm &=24cm b=12cm t$=4cm 6=3cm

Mode 1 68.4 77.3 ‘76.6 77.0 80.4 79.9 79.2 79.1

Mode 2 104.1 110.8 114.8 115.1 117.5 116.8 116.0 115.3

Mode 3 133.1 147.8 148.9 150.5 155.9 115.7 154.3 154.0

Mode 4 166.6 178.0 184.0 185.7 191.4 191.4 190.3 188.4

A. Rotated Square Cylinder

The error in the calculated resonant frequencies of the first and third

modes of a rotated square resonator for the staircase approximation

and for the method described in this paper are shown in Table II. It

can be seen that the error from the modified CPFDTD technique is

consistently less than with the staircase method.

B. Keyhole Waveguide

As an example of a more complex structure, the “keyhole” wave-

guide, similar tothattreated by Daset al. [14], whouseda nonformal

mapping technique, was analyzed. The first four resonant modes of

this structure were calculated using a range of cell sizes in order to

establish the convergence properties of the modified technique when

compared to the staircase approach. The geometry of this structure

and an example of the deformed grid used is given in Fig. 2. In this

case a grid has been generated which is valid for the interior and

the exterior problem. Thecalculated resonant frequencies versus cell

size is shown in Table III together with the results of the staircase

FDTD. It can be seen that consistent results are obtained from the

modified CPFDTD scheme even with a very coarse mesh, whereas
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the discrepancy using the staircase approximation increases rapidly

as the cell size is increased.

VI. CONCLUSION

A simple and effective modification to the well known locally
distorted CPFDTD algorithm has been described and a step-by-
step procedure for the simple generation of the modified grid has
been presented. The fact that the modified scheme is formally
equivalent to a passive electncrd circuit consisting of capacitors and
gyrators ensures that it does not suffer from the instability inherent
in the nearest-neighbor approximation. The robustness, stability and
accuracy of the scheme has been verified for cylindrical resonators
of complex cross-section, including right-angled corners. Trials have
also been performed with many other structures such asparallel-plate-
waveguide containing S bends. In all cases the algorithm remained
stable and accurate. It is anticipated that the added robustness which
the modification provides will facilitate more widespread use of
the CPFDTD algorithm. Furthermore, building on the techniques
described here, it is possible to develop a stabilised CPFDTD scheme
applicable to three-dimensional (3-D) problems. This extension is the
subject of ongoing work and will be described in a future contribution.

ACKNOWLEDGMENT

The authors at the University of Bristol wish to thank Prof. J.

McGeehan for the provision of facilities at the Centre for Commu-

nications Research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

R. Holland, “Fbrite difference solutions of Maxwell’s equations in
generalized nonorthogonal coordinates:’ IEEE Trans. Nucl. Sci., vol.

NS-30, no. 6, 1983, pp. 4589-4591.
J.-F. Lee, and R. Palandech, and R. Mittra, “Modeling three-dimensional

discontinuities in waveguides using non-orthogonal FDTD algorithm,”
lEEETrans. Microwave Theory Tech., vol. 40, Feb. 1992, pp.346–352.

N. K. Madsen, “Divergence preserving dkcrete surface integral methods
for Maxwell’s curl equations using non-orthogonal unstructured grids,”
Rep. UCRL-JC-109787, Lawrence Llverrnore National Lab., 1992.
D. B. Shorthouseand C. J. Railton, “The incorporation of static field

solutions into the finite difference time domain algorithm, IEEE Trans.
Microwave Theory Tech., vol. 40, May 1992, pp. 986-994.

C. J. Railton, “Use of static field solutions in the FDTD method for

the efficient treatment of curved metal surfaces;’ Electronics Lett., Aug.

1993, pp. 1466-1467.

T. G. Jurgens, A. Taflove, K. Umashankar and T. G. Moore, “Fhite-
Difference Time-Domain Modeling of Curved Surfaces,” ZEEETrarzs.
Antennas Propagat., vol. 40, Apr. 1992, pp. 357-366.
T. G. Jurgens and A. Taflove “Three-dimensional contour FDTD model-
ing of scattering from single and multiple bodies,” IEEE Trans. Antennas
Propagat., vol. 41, Dec. 1993, pp. 1703-1708.
M. Okoniewski, J. Anderson, M. Mrozowski, and S. S. Stuchly, “Arbi-

trarily located metrd surfaces mFDTDtechnique; Progress in Electro-
magnetics Res. Symp., pp. 178, Seattle, WA. July 1995.

J. Anderson, M. Okoniewskl and S. S. Stuchly, “3-D FDTD treatment of
perfect electric conductors,” in Dig. URSIMeet. Newport Beach, CA,

1995, p. 257.

C. J. Railton, I. J. Craddock, and J. B. Schneider, “Improved locally

distorted CPFDTD afgorithm with provable stability,” Electronics Lett,

vol. 31, UO. 18, 31 Aug. 1995, pp. 1585, 1586.
I. Craddock and C. J. Railton, “Derivation and application of a passive
equivalent circuit for the FDTD algorithm.” L?EE Microwave Gmded
Wave Lett., Jan. 1996.
W. K. Gwarek, “Analysis of arbitrarily-shaped planar circuits-a time
domain approach’’ IEEE Trans MT’F33, pp 1067–1072,0ct. 1985.

[13]

[14]

M. Celuch-Marcysiak and W. K. Gwarek, “Generalized TLM algorithms

with controlled stability margin and their equivalence with finite differ-
ence formulations for modhled grids,” IEEE Trans. Microwave Fheory
Tech., vol. 43, pp. 2081–2089, Sept. 1995.
B. N. Das, S. B. Chakrabarty, and A. K. Mallick, “Cutoff frequencies

of guiding structures with circular and planar boundaries,” Microwave

and Guided Wave Lett., vol. 5, no. 6, June 1995, pp. 186–188.

CAD Model for Coplanar Waveguide Synthesis

Tianquan Deng

Abstract-Accurate closed-form synthesis formulas for coplanar waveg-

uides are presented for CAD applications, which are approximated in

terms of ordinary functions. These formulas are derived, based on func-

tion approximation and curve-fitting correction of quasi-static numerical

results. Comprehensive comparisons have been made by using results

from the quasi-static analysis, the rigorous full-wave analysis, and the
experiment available in the literature. Accuracy is found to be better than

1.5 percent for the practical range. The application range of frequency
is within the ffnrits well known for quasi-static TEM approximatio]a and

can be appfied up to 20 GHz.

I. INTRODUCTION

Recent progress in monolithic microwave integrated circuits

(MMIC) and millimeter-wave integrated circuits (MMWIC) has

initiated an extensive study of coplanar waveguides (CPW) due

to several advantages offered over conventional microstrip lines

[1], [2]. These advantages include ease of parallel and series

insertion of both active and passive components and high circuit

density. Another feature of coplanar waveguide is that its traces

can be changed to match component lead widths while keeping the

characteristic impedance constant. Most of the study efforts have been

directed towards the obtaining of design parameters by either full-

wave numerical methods [3]–[6] or quasi-static conformal mapping

methods [7]–[ 12]. Full-wave analyses provide high precision in a

wide frequency band. On the other hand quasi-static methods lead

to closed-form expressions suitable for CAD software packages
and they provide a simulation accuracy comparable with full-wave
methods for frequencies up to 20 GHz [1], [13]. More recently CAD
models for coplanar waveguides have received considerable attention
[13]-[15]. It is noted that so far, all of the conventional CAD
models for coplanar waveguides are analysis models that are used

to obtain electrical parameters by the use of geometrical parameters

of CPW structures. No closed-form synthesis formulas for coplanar

waveguides are available; in contrast, both analysis and synthesis

closed-form formulas for microstrip lines have existed for a long time

[16], [17]. Such closed-form synthesis formulas provide a convenient

way for designers to directly obtain the physical dimensions of CPW
structures for the required design specifications rather than through
an iteration approach using the conventional design equations. They
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