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The Analysis of General Two-Dimensional PEC
Structures Using a Modified CPFDTD Algorithm

Chris J. Railton, Ian J. Craddock, and John B. Schneider

Abstract—The use of the contour path finite difference time domain
(CPFDTD) method with locally distorted contours has been shown to
give accurate results for curved metal structures, However, the numerical
stability of this scheme is not guaranteed and significant skill is required
in order to generate an appropriate grid. In this contribution, we present
a modification to the CPFDTD scheme which ensures stability and
give a step-by-step procedure for simple generation of the distorted
grid. Examples are presented to demonstrate that the modified scheme
yields results superior to those obtained using the standard staircased
finite difference time domain (FDTD) approach. Example geometries are
cylindrical cavities having complex cross-sections with smooth surfaces
and right-angle bends, The accuracy of the method is demonstrated by
comparison to analytical results where available.

I. INTRODUCTION

The electromagnetic analysis of complex, curved metal structures
using the finite difference time domain (FDTD) technique has proved
a difficult challenge and one which has not yet been satisfactorily
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resolved. Such problems do, however, occur in a wide variety of
application areas ranging from propagation in waveguides to scat-
tering from aircraft fuselages. Attempts to overcome the difficulties
associated with this type of problem include the use of globally
distorted meshes [1]-{3] and the incorporation of static field solutions
(SES) into the standard Cartesian mesh [4], [5]. The former requires
approximately three times the computer resources of the standard
Cartesian FDTD at the same number of points per wavelength [2],
while the latter, in its present state of development, is prone to
late-time instability.

A third approach to the problem is to use a locally distorted
mesh where the basic Cartesian grid is modified only in the vicinity
of the metal boundaries. One such scheme, the contour path finite
difference time domain (CPFDTD) scheme, is formulated in terms
of the integral form of Maxwell’s equations instead of the usual
differential form {6], [7]. A major advantage of this approach when
compared to other conformal techniques is that the simplicity and
efficiency of the Cartesian mesh is retained throughout the majority
of the problem space and only those nodes which are adjacent to
the curved surface need be given special attention. In addition, the
algorithms for absorbing boundaries, near-to-far field transformations
and Huygens’ sources, which are well developed for the standard
EDTD method, can be applied without change.

Despite the fact that this type of algorithm appears to allow
the efficient analysis of very complex structures, comparatively
little use of the method has been reported. Some researchers have
called into question the stability of the original CPFDTD scheme
since it employs a noncausal and nonreciprocal “nearest neighbor”
approximation [3], [8], [9]. Despite the fact that stability cannot
be guaranteed, it appears that, with appropriate grid selection, in-
stabilities may be weak enough so as not to preclude using the
original CPFDTD scheme for particular open-domain problems [9].
For lossless resonant structures, however, for which there is no
mechanism for dissipating spuriously generated energy, meaningful
results are not usually obtainable [9], [10].

In this contribution we present a modified form of the two-
dimensional (2-D) CPFDTD algorithm which overcomes these prob-
lems without sacrificing accuracy. This modification recasts the
“pearest neighbor” approximation, employed in standard CPFDTD,
such that reciprocal interaction of nodes is obtained. Examination
of the update equations for those E field nodes whose values are
borrowed by neighboring cells and for the H field cells which are
directly affected by them, shows that the original CPFDTD spatial
discretization scheme is likely to produce a system which does not
comply with the law of conservation of energy. It can also be shown
that grids which allow extended contours to overlap may not conserve
energy. Since, in these cases. the instability is inherent in the spatial
discretization, there will exist no choice of time step which will
yield a stable solution. Before it is useful to consider the problem
of determining the CFL limit for the modified difference scheme.
it is necessary to ensure that the underlying differential scheme is
energy conserving. The modification described in this contribution
yields a system whose update equations are identical to those of a
passive electrical network consisting only of capacitors and gyrators
which must necessarily conserve energy [11].

In this paper the nature of the instabilities which can occur in
the standard CPFDTD algorithm is discussed, then, a step-by-step
procedure is presented whereby the energy conserving CPFDTD mesh
can be generated. Finally the use of the method is demonstrated
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Fig. 1. The CPFDTD method applied to a cylinder.

for the analysis of a square resonator, rotated with respect to the
grid, and of a resonator with complex cross-section. By comparison
to analytical results for the square resonator the accuracy of the
scheme is shown. The accuracy and convergence properties are
further demonstrated, using the complex resonator, by varying the
unit cell size over a broad range. For the geometries presented here,
and for all other geometries to which the algorithm has been applied,
numerical stability was always achieved without reducing the time
step below that used for the standard FDTD scheme.

An alternative scheme aimed at solving similar problems to those
addressed in this paper was presented in [12] and further developed
in a very recent publication, [13]. Although the algorithm described
here is based on a generalization of the CPFDTD scheme whereas
that in [13] is based on a generalization of the TLM method, the two
algorithms have some aspects in common. The relative accuracy and
efficiency of these two schemes remains an open question.

II. THE NATURE OF THE INSTABILITY

As explained in [10], the root of the instability problem in the
standard CPFDTD approach can be traced to those E nodes whose
values are borrowed from neighboring distorted cells. Consider the
cross-section of a circular cylindrical resonator, a quarter of which is
shown in Fig. 1. Here, the grid for the TE problem is shown where
the H, nodes are indicated by circles and are located at the centre of
each undistorted cell. The E, and E, nodes are marked by crosses
or arrows and are found along the edges of cells. The magnetic
field is assumed to be constant over the area of a given cell while
electric fields are assumed to be constant over the length of the edge
corresponding to a given node. Dashed lines indicate edges which are
not used in the scheme. The E nodes represented by arrows cannot
be calculated directly using the FDTD scheme because one or both of

the H. nodes required in the corresponding update equation is in the
metal. Following [6] these nodes borrow their value from the nearest
available collinear E field component. The numbers in the centre of
each square are the areas enclosed by the Faraday contours and the
numbers next to the edges are the lengths of the straight sections of
the associated contour. In each case the values are normalized so that
values of 100 correspond to an unmodified cell. Although the grid
shown in Fig. 1 appears to be the most obvious way of implementing
the CPFDTD algorithm, it is not difficult to demonstrate that such an
implementation leads to numerical instability. We may show this by
considering the scheme in matrix form thus

< —ABE 6]

where E is the vector formed by the values of all the E field nodes
in the mesh, and A and B are matrices containing the coefficients
of the update equaions for the E and H nodes, respectively. The
elements of these two matrices differ from the coefficients of the
usual CPFDTD update equations only insofar as there is no factor
&t, i.e., at this point the system is assumed to be a continuous time
system. Equation (1) has the solution

E=7 Eelnt=) )

where k., is the ith eigenvector of the matrix AB and (o, + Jun)?
is the corresponding eigenvalue. The condition for stability is that
none of the values of o, be greater than zero. If the discretised
scheme correctly represents a lossless situation then o, would be
zero for all values of 7. This is not the case for the nearest-
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TABLE 1
PARAMETERS USED IN THE GENERATION OF THE MODIFIED CPFDTD MEsn
Name Associated Default Comment

Quantity Value
inside_metal H, false true if H, is inside metal
ex_available E, true false if either of the neighbouring H, nodes are in metal
ey_available E, true Jalse if either of the neighbouring H, nodes are in metal
ex_exist E, true false if edge is not used in the CPFDTD algorithm
ey_exist E, true Jalse if edge is not used in the CPFDTD algorithm
ex_from E, 0 Integer offset used to point to borrowed E, nodes
ey_from E, 0 Integer offset used to point to borrowed E, nodes

neighbor discretization associated with Fig. 1. It is emphasised that
since only the spatial discretization is being examined here, this
instability will exist regardless of the time step used, i.e., the system
is unconditionally unstable.
Referring to Fig. 1, the update equation for H. (1.5, 0.5) is given
by
8t (100
n+1 n n+41/2
. 5,0.5) = HI(1.5.05) + —{ =—F 2,0.5
H}7(1.5,05)=HI(1 )+;¢6<76 Y ( )
80 n+1/2 67 n+1/2
—F 1.5.0) - = E; 2.5,1
+ gk (LS 0) 6 ( )
(3)

where E,(2.5.1) is the borrowed node, 6t is the time step and 6 is
the space step.
The update equation for E.(2.5,1) is given by

ErtD 251y = Er~Y%(2.5,1)

+ f—;(H?(2.5,1-5) - HI(25,05). @)

It can be seen that no corresponding inclusion of H.(1.5,0.5) ex-
ists. This scheme represents an unphysical situation which, therefore.
cannot be guaranteed to behave in an energy conserving manner.

In order to remedy the situation, we must modify this equation to
include the missing term. This can be done as follows:

ot

ErtY2(25.1y =B 3(25,1) + =

67
7 (1.5,0.
167 7 (1.5,0.5)

: (Hf(2.5,1.5) -
100 _,
- g (2.5,0.5)). (5)

Here we have taken a weighted average of the two H . nodes which
have a dependence on E,(2.5,1) through the contour segment with
a total length of 167, with the weights being in the same ratio as the
strengths of the corresponding dependencies. In general, the modified
update equations use a weighted average of the H. nodes to ensure
that the nodes associated with a borrowed value interact reciprocally.
As well as being intuitively more reasonable, this change makes it
possible to prove that the resulting scheme is the analogue of a passive
circuit consisting entirely of capacitors and gyrators [11]. The system

must, therefore, conserve energy. Calculation of the eigenvalues of
the new scheme confirms that, indeed, all values of o, are zero.

III. A PROCEDURE FOR GENERATING THE CPFDTD GRriD

To facilitate the generation of the modified CPFDTD grid for
arbitrary metal objects we first define some parameters. These are
summarized in the Table I.

With each H node a flag is associated which indicates whether
or not that node is inside the metal. With each E node two flags
are associated. One flag indicates whether it can be updated using H
nodes which are outside the metal and is therefore available from the
standpoint of the standard FDTD equations. The other flag indicates
whether any portion of the edge associated with a node will be used
in the final mesh and will therefore exist. Ultimately, the status of
some nodes will be that they exisr but are not available. For these
nodes it is then necessary to borrow values from neighboring nodes.
Therefore, for each E node an integer offset, from, is used to indicate
from where its value must be borrowed (a value of zero indicates
that no borrowing is necessary).

To generate the mesh and the associated update equations, we use
the following procedure:

1) For each H node, set the inside_metal flag to true if the node
is inside the metal.

2) For each F node in the mesh set the flag available to false if
either of the H nodes whose values are required in the standard
FDTD update equation are inside the metal.

3) For each E node set the exist flag to false if the corresponding
edge is totally inside the metal.

4) For each H node which is inside the metal and whose sur-
rounding undistorted contour intersects the metal boundary, set
the exist flag of one and only one of the surrounding E nodes
to false so as to join the contour to that of the neighboring
node which has the largest number of available surrounding E
nodes.

5) For each E' node which is not available but does exist set the
from offset to the nearest collinear node which is available.

6) For each H node, which is not inside the metal, calculate the
lengths of each straight section of the distorted Faraday contour.
Additionally, calculate the area of the surface surrounded by
the contour.
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TABLE II
PERCENTAGE ERROR IN THE RESULTS FOR A ROTATED SQUARE RESONATOR OF SIDE 30 cm AND UNIT CELL Sizk &

“ Staircase Approximation ll Modified CFDTD

Mode 1 l Mode 3 Mode 1 ‘ Mode 3
Angle | 5=5cm | 6=2.5cm | 6=5cm | 6=2.5cm | 8=5cm { 6=2.5cm | é=Scm | 6=2.5cm
o -0.72 -0.26 -2.85 -0.77 -0.72 -0.26 -2.85 -0.77
5° -0.72 -0.26 -2.85 -0.77 -0.60 -0.14 -2.42 -0.45
10° -0.72 -2.66 -2.85 -6.91 -0.10 -0.02 -0.93 -0.53
15° -6.44 -1.46 13.3 -1.53 0.12 0.04 -1.41 -0.29
20° -6.44 -3.90 13.3 0.92 0.40 0.36 -0.39 -0.21
25° -12.38 -3.80 13.6 -5.06 0.90 0.90 -1.25 0.30
30° -4.44 -4.76 13.6 -0.81 0.08 1.08 0.14 0.70
35° -4.44 -3.60 13.6 -6.04 1.42 1.18 1.20 0.80
40° -4.44 -3.10 12.2 -4.33 3.36 1.34 2.20 0.70
45° -10.42 -3.06 -8.12 -3.54 1.86 1.78 0.10 1.00

Referring to (3), for each H node which is not inside the metal
we set the numerators and denominators of each fraction mul-
tiplying the F field nodes as follows. Set all the denominators
equal to the area surrounded by the Faraday contour. Set each
numerators equal to the length of that part of the Faraday
contour which passes through the E node with which it is
associated.

Referring to (5), for each E node which is available we set
the numerators and denominators of each fraction multiplying
the H field nodes as follows: Set all denominators equal to the
length of the edge containing the E' node. Set each numerator
equal to the length of that part of the edge which coincides
with the Faraday contour of the associated H node.

an example we use the cylinder shown in Fig. 1:

The H. nodes at [0, 01, [0, 1], [0, 2], [0, 31, [0, 4]. [1, 1], [1, 2],
(1, 31,11, 41, [2, 3). [2, 41, [3. 31, [3. 4], [4, 4] are inside_metal.
The nodes E,[1,1], E;[2,3]. E:[3,3]. E.[4,4] and E,[1,0],
E,[2,1], Ey[2.2], Ey[4, 3] are not available.

The flags ex_exist at [0, 01, [0, 11, [0, 2], [0, 31, [0, 4], [1, 3],
[1, 41, [2, 41, [3. 4], [4, 4] are set to false. The flags ey_exist
at [0, 0], [0, 11, [0, 21, [0, 31, [0, 41, [1, O}, [1, 1], [1, 2], [1,
3], 1, 41, 12, 31, [2, 4], [3, 4], [4, 4] are set to false.

The flags ey_exist at [2, 1], {2, 2] and the flags ex_exist at [2,
31. [3, 3] are set to false.

The offsets are set as: ex_from [1, 11= 1, ey_from [3, 3] = -1,
ex_from [1, 2] = 1, ey_from [4,3] = —1 all others to zero.
The values of the areas and the lengths of edges are calculated
as shown on Fig. 1.

The denominators of the fractions in the H field update equa-
tions are just those shown on Fig. 1 as areas. The numerators
are given by the lengths, also shown on Fig. 1.

8) The numerators and denominators of the fractions in the £ field
update equations are given by the lengths shown on Fig. 1.

1V. THE CHOICE OF TIME STEP

Having established that the spatial discretization scheme is energy
conserving, it is now appropriate to consider the maximum time step
which is allowed. The CFL limit for the standard FDTD scheme
can be established by the following condition. The time step must
be small enough so that the domain of dependence of the time
discretised scheme is greater than, or equal to, that of the underlying
differential equations. For the FDTD scheme the time step limit
can be found by considering propagation in the diagonal direction.
Maxwell’s equations dictate that free space propagation between
neighboring diagonal nodes requires a time of (/26/c. In the time
discretised scheme this requires 2 time steps. This leads to the well
known condition: 6t < 8/(cv/2) for stability. Consideration of the
modified CPFDTD scheme shows that no worse case than this has
been introduced and therefore the CFL condition is unaltered.

V. NUMERICAL RESULTS

In order to demonstrate both the stability and accuracy of the
scheme, the resonant frequencies of the TE modes of a rotated square
cylinder and of a cylinder with a complex cross-section have been
calculated. (The TM cases require no modification to the standard
CPFDTD scheme since, in this case, the scheme can be shown to
be physically realizable as no borrowing from neighboring distorted
cells is necessary.) Results for the case of a circular cylinder have
previously been presented in [10]. All these results were obtained
using 8000 time steps. Additional runs were done using 32 000 time
steps and no instability was ever observed.
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RESULTS FOR THE RESONANT FREQUENCIES OF A KEYHOLE RESONATOR VERSUS CELL SIZE &

l Staircase Approximation Modified CPFDTD
d=24cm | 6=12cm | é=4cm | é=3cm §=24cm | 6=12cm | 6=4cm §=3cm
Mode 1 | 68.4 77.3 76.6 77.0 80.4 79.9 79.2 79.1
Mode 2 | 104.1 110.8 114.8 115.1 117.5 116.8 116.0 115.3
Mode 3 | 133.1 147.8 148.9 150.5 155.9 115.7 - | 154.3 154.0
Mode 4 166.6 178.0 184.0 185.7 191.4 191.4 190.3 188.4

A. Rotated Square Cylinder mapping technique, was analyzed. The first four resonant modes of

The error in the calculated resonant frequenmes of the first and third
modes of a rotated square resonator for the staircase approximation
and for the method described in this paper are shown in Table II. It
can be seen that the error from the modified CPFDTD technique is
consistantly less than with the staircase method.

B. Keyhole Waveguide

As an example of a more cdmplex structure, the “keyhole” wave-
guide, similar to that treated by Das et al. [14], who used a conformal

this structure were calculated using a range of cell sizes in order to
establish the convergence properties of the modified technique when
compared to the staircase approach. The geometry of this structure
and an example of the deformed grid used is given in Fig. 2. In this
case a grid has been generated which is valid for the interior and
the exterior problem. The calculated resonant frequencies versus cell
size is shown in Table II together with the results of the staircased
FDTD. It can be seen that consistent results are obtained from the
modified CPFDTD scheme even with a very coarse mesh, whereas
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the discrepancy using the staircase approximation increases rapidly
as the cell size is increased.

V1. CONCLUSION

A simple and effective modification to the well known locally
distorted CPFDTD algorithm has been described and a step-by-
step procedure for the simple generation of the modified grid has
been presented. The fact that the modified scheme is formally
equivalent to a passive electrical circuit consisting of capacitors and
gyrators ensures that it does not suffer from the instability inherent
in the nearest-neighbor approximation. The robustness, stability and
accuracy of the scheme has been verified for cylindrical resonators
of complex cross-section, including right-angled corners. Trials have
also been performed with many other structures such as parallel-plate-
waveguide containing S bends. In all cases the algorithm remained
stable and accurate. It is anticipated that the added robustness which
the modification provides will facilitate more widespread use of
the CPFDTD algorithm. Furthermore, building on the techniques
described here, it is possible to develop a stabilised CPFDTD scheme
applicable to three-dimensional (3-D) problems. This extension is the
subject of ongoing work and will be described in a future contribution.
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Abstract—Accurate closed-form synthesis formulas for coplanar waveg-
uides are presented for CAD applications, which are approximated in
terms of ordinary functions. These formulas are derived, based on func-
tion approximation and carve-fitting correction of quasi-static numerical
results. Comprehensive comparisons have been made by using results
from the quasi-static analysis, the rigorous full-wave analysis, and the
experiment available in the literature. Accuracy is found to be better than
1.5 percent for the practical range. The application range of frequency
is within the limits well known for quasi-static TEM approximation and
can be applied up to 20 GHz.

1. INTRODUCTION

Recent progress in monolithic microwave integrated circuits
(MMIC) and millimeter-wave integrated circuits (MMWIC) has
initiated an extensive study of coplanar waveguides (CPW) due
to several advantages offered over conventional microstrip lines
11, [2]. These advantages include ease of parallel and series
insertion of both active and passive components and high circuit
density. Another feature of coplanar waveguide is that its traces
can be changed to match component lead widths while keeping the
characteristic impedance constant. Most of the study efforts have been
directed towards the obtaining of design parameters by either full-
wave numerical methods [3]-[6] or quasi-static conformal mapping
methods [7]-[12]. Full-wave analyses provide high precision in a
wide frequency band. On the other hand quasi-static methods lead
to closed-form expressions suitable for CAD software packages
and they provide a simulation accuracy comparable with full-wave
methods for frequencies up to 20 GHz [1], [13]. More recently CAD
models for coplanar waveguides have received considerable attention
[13}-[15]. 1t is noted that so far, all of the conventional CAD
models for coplanar waveguides are analysis models that are used
to obtain electrical parameters by the use of geometrical parameters
of CPW structures. No closed-form synthesis formulas for coplanar
waveguides are available; in contrast, both analysis and synthesis
closed-form formulas for microstrip lines have existed for a long time
[16], [17]. Such closed-form synthesis formulas provide a convenient
way for designers to directly obtain the physical dimensions of CPW
structures for the required design specifications rather than through
an iteration approach using the conventional design equations. They
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